Feature selection for monotonic classification via maximizing monotonic dependency

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-margin feature selection for monotonic classification

Monotonic classification plays an important role in the field of decision analysis, where decision values are ordered and the samples with better feature values should not be classified into a worse class. The monotonic classification tasks seem conceptually simple, but difficult to utilize and explain the order structure in practice. In this work, we discuss the issue of feature selection unde...

متن کامل

Feature Selection via Maximizing Fuzzy Dependency

Feature selection is an important preprocessing step in pattern analysis and machine learning. The key issue in feature selection is to evaluate quality of candidate features. In this work, we introduce a weighted distance learning algorithm for feature selection via maximizing fuzzy dependency. We maximize fuzzy dependency between features and decision by distance learning and then evaluate th...

متن کامل

A Monotonic Measure for Optimal Feature Selection

Feature selection is a problem of choosing a subset of relevant features. Researchers have been searching for optimal feature selection methods. `Branch and Bound' and Focus are two representatives. In general, only exhaustive search can bring about the optimal subset. However, under certain conditions, exhaustive search can be avoided without sacri cing the subset's optimality. One such condit...

متن کامل

Budget constrained non-monotonic feature selection

Feature selection is an important problem in machine learning and data mining. We consider the problem of selecting features under the budget constraint on the feature subset size. Traditional feature selection methods suffer from the "monotonic" property. That is, if a feature is selected when the number of specified features is set, it will always be chosen when the number of specified featur...

متن کامل

Learning Monotonic Transformations for Classification

A discriminative method is proposed for learning monotonic transformations of the training data while jointly estimating a large-margin classifier. In many domains such as document classification, image histogram classification and gene microarray experiments, fixed monotonic transformations can be useful as a preprocessing step. However, most classifiers only explore these transformations thro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computational Intelligence Systems

سال: 2013

ISSN: 1875-6891,1875-6883

DOI: 10.1080/18756891.2013.869903